
GBA424: Analytics Design - Assignment 3
Pin Li, Jiawen Liang, Ruiling Shen, Chenxi Tao, Khanh Tran

2/2/2020

Setup

rm(list = ls())

Set up environment and load datasets
dir="E:/Studying/Simon/Classes/GBA424 - Analytics Design/Assignments/Assignment 3"
setwd(dir)
load("GBA424 - Toy Horse Case Data.Rdata")
require("cluster")

Loading required package: cluster

require("fpc")

Loading required package: fpc

Warning: package 'fpc' was built under R version 3.6.2

require("factoextra")

Loading required package: factoextra

Warning: package 'factoextra' was built under R version 3.6.2

Loading required package: ggplot2

Warning: package 'ggplot2' was built under R version 3.6.2

Welcome! Want to learn more? See two factoextra-related books at https://goo.gl/ve3WBa

require("gridExtra")

Loading required package: gridExtra

Warning: package 'gridExtra' was built under R version 3.6.2

library(cluster)
library(fpc)
library(factoextra)
library(gridExtra)
library(reshape)

Part A

1

################################
PART A
################################

Use regression to estimate the conjoint model at the individual level

Create new dataset for part A
indi_data = conjointData

Subset the data to train the model
indi_training = indi_data[!(is.na(indi_data$ratings)),]
indi_missing = indi_data[is.na(indi_data$ratings),]

Store the coefficients
numIDs = length(unique(conjointData$ID)) # Number of respondents
partworths1 = data.frame(ID = 1:numIDs, intercept = NA, price = NA,

size = NA, motion = NA, style = NA)
indi_pred = list() # List that saves predicted ratings of missing profiles
for (num in 1:numIDs){

data.training.sub = subset(indi_training, ID == num)
data.missing.sub = subset(indi_missing, ID == num)
lm = lm(ratings~price+size+motion+style,data = data.training.sub)
partworths1[num, 2:6] = lm$coefficients
indi_pred = append(indi_pred,predict(lm,data.missing.sub))

}

Replace NA ratings with predicted ratings for missing profiles
indi_data$ratings[is.na(indi_data$ratings)] = unlist(indi_pred)

Part-utilities of the conjoint model at the individual level are stored in the ‘partworths1’. The NAs in the
survey data are replaced by the predictions for missing profiles.

Part B

################################
PART B
################################
source("ConjointCode.R")

Evaluate number of clusters to use on data with visualizations
checkClust = clustTest(partworths1[,2:6],print=TRUE,scale=TRUE,maxClusts=10,

seed=12345,nstart=20,iter.max=100)

2

250

500

750

1000

1 2 3 4 5 6 7 8 9 10
Number of clusters k

To
ta

l W
ith

in
 S

um
 o

f S
qu

ar
e

Optimal number of clusters

0.0

0.2

0.4

0.6

1 2 3 4 5 6 7 8 9 10
Number of clusters k

A
ve

ra
ge

 s
ilh

ou
et

te
 w

id
th

Optimal number of clusters

clusts = runClusts(partworths1[,2:6],c(2,3,4,5),print=TRUE,maxClusts=4,
seed=12345,nstart=20,iter.max=100)

3

−2

−1

0

1

−3 −2 −1 0 1 2 3
Dim1 (68.1%)

D
im

2
(2

2.
4%

)

cluster

1

2

k = 2

−2

−1

0

1

−3 −2 −1 0 1 2 3
Dim1 (68.1%)

D
im

2
(2

2.
4%

) cluster

1

2

3

k = 3

−2

−1

0

1

−3 −2 −1 0 1 2 3
Dim1 (68.1%)

D
im

2
(2

2.
4%

) cluster

1

2

3

4

k = 4

−2

−1

0

1

−3 −2 −1 0 1 2 3
Dim1 (68.1%)

D
im

2
(2

2.
4%

)

cluster

1

2

3

4

5

k = 5

page 1 of 1

The optimal number of clusters is 3, where the average silhouette width is the highest, and the customer
can be separated in to 3 non-overlapped groups of people with different preferences.

Plot clusters with nClusters = 3
plotClust(clusts[[1]][[2]],partworths1)

4

1 = 40%
2 = 26%

3 = 34%

−3 −2 −1 0 1 2 3

−
1

CLUSPLOT(toClust)

Component 1

C
om

po
ne

nt
 2

These two components explain 75.88 % of the point variability.

1

2

3 4 5
6

7 8 910 11
12

13
14

15
16 17

181920212223 24
25

2627
28

29 30

31

32
33

343536 3738 3940
4142

43 44 4546 47 484950
5152

535455 5657

58

59

6061
62 6364

65
66 67 6869 70

71 72
73

74
75

76
7778 798081 82 83

84
858687

88 89
90 91

92
93

94
95

96
9798 99100101 102

103
104

105
106 107108109

110111
112

113
114115116

117
118119

120

121122123 124125126
127

128129 130 131 132 133134135 136137 138139
140

141 142143144 145146 147148149

150

151

152
153154155 156157 158159160 161

162163
164165

166 167168
169170171

172
173 174175 176

177
178179

180
181

182 183 184185
186187188189

190 191192193
194

195 196197 198
199

200
1

2
3

intercept price size motion style

Cluster Means

−
10

50 31.5 40.9 46.1
22.5 11.6 8.9 5.3

−6.6
16.6

−9.4
10.0 7.0

−6.6 0.5 11.0

Cluster means
partworths1_seg = as.data.frame(clusts[[1]][[2]]$centers)
partworths1_seg

intercept price size motion style
1 31.50291 22.474947 5.348628 -9.434120 -6.6285255
2 40.88116 11.564861 -6.561319 10.038882 0.4726337
3 46.13706 8.938311 16.593109 6.965209 10.9539010

In the post-hoc segmentation, we use 3 clusters. The sign and magnitude of attribute coefficients indicate
the preference of consumers within certain attributes, with positive sign meaning consumers prefer that
attribute. We can use this result to support our product line decision.

Ideal product for each segment
Segment 1: prefer lower price, bigger size, bouncing motion and racing style. → Profile 4
Segment 2: preder lower price, smaller size, rocking motion and glamour style. → Profile 14
Segment 3: preder lower price, bigger size, rocking motion and glamour style. → Profile 16

Part C

################################
PART C
################################

5

Create new dataset for part C
seg_data = conjointData

Conduct a priori segmentation using the variabkes gender and age
demo = as.data.frame(lapply(respondentData,as.factor)) # demographic info

Create 3 segmentations by age, by gender, and by age & gender
demo_seg1 = kmeans(x=demo[,2:3], centers = 4, nstart = 1000) # age & gender (4 clusters)
demo_seg2 = kmeans(x=demo[,2], centers = 2, nstart = 1000) # age (2 clusters)
demo_seg3 = kmeans(x=demo[,3], centers = 2, nstart = 1000) # gender (2 clusters)

Merge cluster id with the original conjoint data
cluster_id = data.frame(ID = demo$ID,

seg1=factor(demo_seg1$cluster),
seg2=factor(demo_seg2$cluster),
seg3=factor(demo_seg3$cluster))

seg_data = merge(seg_data, cluster_id,by = "ID", all.x = T)

Subset training and missing data
seg_training = seg_data[!(is.na(seg_data$ratings)),]
seg_missing = seg_data[is.na(seg_data$ratings),]

To test whether priori segmentations affect part-utilities, we run regressions with interactions of the segment
dummies with each attribute.
Segmentation 1: By age and gender

Segmentation 1 by age and gender
summary(lm(ratings~price+size+motion+style+

price*seg1+size*seg1+
motion*seg1+style*seg1,

data=seg_training))[[4]]

Estimate Std. Error t value Pr(>|t|)
(Intercept) 40.3828391 1.310593 30.8126462 9.855947e-176
price 13.6446118 1.228081 11.1105104 5.374151e-28
size 9.4914412 1.175798 8.0723367 1.083173e-15
motion 2.0536536 1.175798 1.7466034 8.083515e-02
style 3.8353065 1.175798 3.2618740 1.122419e-03
seg12 -5.3905360 2.082565 -2.5884120 9.700640e-03
seg13 -2.6048124 1.931992 -1.3482519 1.777057e-01
seg14 1.1196003 1.986693 0.5635497 5.731137e-01
price:seg12 5.1194739 1.951452 2.6234178 8.760826e-03
price:seg13 1.7460060 1.810359 0.9644529 3.349169e-01
price:seg14 -0.3126248 1.861616 -0.1679319 8.666511e-01
size:seg12 -3.7054922 1.868373 -1.9832722 4.745179e-02
size:seg13 -7.1289830 1.733287 -4.1129851 4.038368e-05
size:seg14 -3.9889956 1.782362 -2.2380394 2.531065e-02
motion:seg12 -6.0030956 1.868373 -3.2130070 1.331076e-03
motion:seg13 -0.3604476 1.733287 -0.2079561 8.352810e-01
motion:seg14 1.9603507 1.782362 1.0998613 2.715038e-01
style:seg12 -6.9041865 1.868373 -3.6952935 2.245875e-04
style:seg13 -4.8176418 1.733287 -2.7794833 5.487330e-03
style:seg14 -0.2488841 1.782362 -0.1396373 8.889584e-01

6

The interaction coefficients between segmentations and attributes are not entirely significant, so we consider
testing whether gender or age is meaningful for business segmentation.

Segmentation 2: By age

Segmentation 2 by age
summary(lm(ratings~price+size+motion+style+

price*seg2+size*seg2+
motion*seg2+style*seg2,

data=seg_training))[[4]]

Estimate Std. Error t value Pr(>|t|)
(Intercept) 39.54618223 1.0867243 36.39026357 4.223074e-231
price 14.41328802 1.0183069 14.15416914 9.781338e-44
size 3.85315922 0.9749546 3.95214210 7.970172e-05
motion 2.79499918 0.9749546 2.86679924 4.182755e-03
style 1.18667087 0.9749546 1.21715497 2.236654e-01
seg22 -1.29820883 1.5292330 -0.84892805 3.960063e-01
price:seg22 1.25883815 1.4329565 0.87849016 3.797661e-01
size:seg22 4.17076027 1.3719514 3.04002051 2.391276e-03
motion:seg22 -3.11880912 1.3719514 -2.27326508 2.309859e-02
style:seg22 -0.08569567 1.3719514 -0.06246261 9.501997e-01

The segmentation here only affects part-utilities of size attribute.

Segmentation 3: By gender

Segmentation 3 by gender
summary(lm(ratings~price+size+motion+style+

price*seg3+size*seg3+
motion*seg3+style*seg3,

data=seg_training))[[4]]

Estimate Std. Error t value Pr(>|t|)
(Intercept) 36.5668426 1.0739178 34.0499449 1.606196e-207
price 16.8573429 1.0063067 16.7516948 1.215027e-59
size 3.8509324 0.9634653 3.9969600 6.610460e-05
motion -0.7601191 0.9634653 -0.7889429 4.302236e-01
style -1.8895287 0.9634653 -1.9611797 4.997401e-02
seg32 4.3032300 1.4614170 2.9445599 3.265352e-03
price:seg32 -3.3487809 1.3694100 -2.4454188 1.454011e-02
size:seg32 3.9045569 1.3111102 2.9780539 2.930023e-03
motion:seg32 3.6668883 1.3111102 2.7967811 5.202755e-03
style:seg32 5.6165245 1.3111102 4.2837927 1.910028e-05

The interation coefficients are significant in segmentations by gender.

Conclusion
From the significant effect of gender segmentation to all the four attributes, we can safely conclude that
gender is the most meaningful factor to use for a priori segmentation. Meanwhile, age does not play such an
important role as gender with insignificant effects to price and style.

We will use only gender to do priori demographic segmentation.

7

Segment-level regressions
partworths2_seg = data.frame(cluster = 1:2, intercept = NA, price = NA,

size = NA, motion = NA, style = NA)
for (seg in 1:2){

data.sub = subset(seg_training, seg3 == seg)
lm = lm(ratings~price+size+motion+style, data=data.sub)
partworths2_seg[seg, 2:6] = lm$coefficients

}
partworths2_seg

cluster intercept price size motion style
1 1 36.56684 16.85734 3.850932 -0.7601191 -1.889529
2 2 40.87007 13.50856 7.755489 2.9067692 3.726996

We’ll only get 2 sets of part-utilities instead of 200. But at least one set of part-utilities for attributes varies
significantly across segments, and can be used for target different optimal products.
Ideal product for each segment
Segment 1: prefer lower price, bigger size, bouncing motion and racing style. → Profile 4
Segment 2: preder lower price, bigger size, rocking motion and glamour style. → Profile 16

Part D

#################################
PART D
#################################

Prepare data for analysis
ratingData = cast(indi_data, ID ~ profile, value="ratings")
ratingData = ratingData[, -1] # Remove the ID column

Function to calculate market share and deal with tie decisions
simFCSharesTie = function(scen,data,ascend=FALSE){

inmkt = data[,scen]
if(ascend){
bestOpts = apply(inmkt,1,min)
} else {
bestOpts = apply(inmkt,1,max)
}

decisions = inmkt == bestOpts
decisionsTie = decisions / rowSums(decisions)
mkShare = colSums(decisionsTie)/sum(decisionsTie)
mkShare

}

Set up scenarios
Our current products’ profile IDs are 5 and 13, and the competitor’s profile ID is 7. We will simulate the
scenarios in which we launch ideal products from part B and part C, considering the competitor’s reponse
by reducing his price.
Senarios:

8

Scenario Our Products Competitor’s Product
1 (Original) 5, 13 7
2 (Part B) 4, 14, 16 7
3 (Part B) 4, 14, 16 8
4 (Part C) 4, 16 7
5 (Part C) 4, 16 8

6 14, 16 7
7 14, 16 8

Set up scenarios
scens = list()
scens[[1]]=c(5,13,7)
scens[[2]]=c(4,14,16,7)
scens[[3]]=c(4,14,16,8)
scens[[4]]=c(4,16,7)
scens[[5]]=c(4,16,8)
scens[[6]]=c(14,16,7)
scens[[7]]=c(14,16,8)

Market Share
sapply(scens,simFCSharesTie,data=ratingData, ascend=FALSE)

[[1]]
5 13 7
0.22 0.21 0.57
##
[[2]]
4 14 16 7
0.40 0.25 0.35 0.00
##
[[3]]
4 14 16 8
0.355 0.220 0.340 0.085
##
[[4]]
4 16 7
0.405 0.595 0.000
##
[[5]]
4 16 8
0.355 0.465 0.180
##
[[6]]
14 16 7
0.300 0.695 0.005
##
[[7]]
14 16 8
0.230 0.365 0.405

In scenario 2, 4, 6, the competitor’s share decreases tremendously so we assume that he will decrease his price
in response (i.e., changing from profile 7 to profile 8). Hence we remove these scenarios and move forward

9

with scenario 1, 3, 5, 7. After simulating the market share, we will simulate short-term and long-term
profitability.

Simulate profitability
Variable cost
variableCost = profilesData
variableCost$varCost[variableCost$size==0 & variableCost$motion==1] = 33 # 18" Rocking
variableCost$varCost[variableCost$size==1 & variableCost$motion==1] = 41 # 26" Rocking
variableCost$varCost[variableCost$size==0 & variableCost$motion==0] = 21 # 18" Bouncing
variableCost$varCost[variableCost$size==1 & variableCost$motion==0] = 29 # 26" Bouncing

Function to calculate profitability over years
profitFunc = function(scen, data, year=1) {

marketShares = simFCSharesTie(scen, data, ascend=FALSE)

ourProducts = scen[-length(scen)] # exclude competitor's share
ourMarketShare = marketShares[1:length(ourProducts)]

quantity = ourMarketShare*4000
price = profilesData$priceLabel[profilesData$profile %in% ourProducts]*100/125
varCost = variableCost$varCost[variableCost$profile %in% ourProducts]
fixCost = 20000*length(ourProducts)*year +

sum(!(ourProducts %in% c(5, 13, 6, 14)))*1/3*20000

margin = (price-varCost)*quantity
profit = sum(margin)*year - fixCost
results = list(profit, margin)
results

}

First we calculate annual margin for each product in each scenario.

Annual margin for each product
productMargin = lapply(scens[c(1, 3, 5, 7)],

function (x) profitFunc(x,
data=ratingData,
year=1)[[2]])

productMargin

[[1]]
5 13
69512.96 66353.28
##
[[2]]
4 14 16
95128.64 55432.96 74789.12
##
[[3]]
4 16
95128.64 102285.12
##
[[4]]
14 16
57952.64 80288.32

10

Then we look at overall profitability of the company over years.

Calculate overall profit
profitData = matrix(nrow=10, ncol=4)
colnames(profitData) = c("'5,13,7'", "'4,14,16,8'", "'4,16,8'", "'14,16,8'")
rownames(profitData) = paste("Year", 1:10)

for (year in 1:10) {
profitData[year,] = sapply(scens[c(1, 3, 5, 7)],

function (x) profitFunc(x,
data=ratingData,
year=year)[[1]])

}

profitData

'5,13,7' '4,14,16,8' '4,16,8' '14,16,8'
Year 1 95866.24 152017.4 144080.4 91574.29
Year 2 191732.48 317368.1 301494.2 189815.25
Year 3 287598.72 482718.8 458907.9 288056.21
Year 4 383464.96 648069.5 616321.7 386297.17
Year 5 479331.20 813420.3 773735.5 484538.13
Year 6 575197.44 978771.0 931149.2 582779.09
Year 7 671063.68 1144121.7 1088563.0 681020.05
Year 8 766929.92 1309472.4 1245976.7 779261.01
Year 9 862796.16 1474823.1 1403390.5 877501.97
Year 10 958662.40 1640173.9 1560804.3 975742.93

Scenario 3 (2nd column), in which we sell profile 4, 14, 16 and the competitor sell profile 8, yields the highest
profit both in short term and long term.

apply(profitData, 1, which.max)

Year 1 Year 2 Year 3 Year 4 Year 5 Year 6 Year 7 Year 8 Year 9
2 2 2 2 2 2 2 2 2
Year 10
2

11

	Setup
	Part A
	Part B
	Part C
	Part D

